- wherein a group comprises sequencing reads from one of the uniquely labeled double-stranded target nucleic acid molecules; and
- (e) comparing the first-strand sequencing reads with the second-strand sequencing reads in each group, and generating an error-corrected sequence for a plurality of the double-stranded target nucleic acid molecules by distinguishing erroneous nucleotides in one strand that lack a matched base change in the complementary strand.
- **40**. The method of claim **39**, wherein the double-stranded cyphers comprise random identifier sequences.
- **41**. The method of claim **39**, wherein the double-stranded cyphers comprise identifier sequences that are not completely random.
- **42**. The method of claim **39**, wherein a target tag sequence comprises nucleotides at an end of a target nucleic acid molecule.
- **43**. The method of claim **42**, wherein the end of the target nucleic acid molecule is a sheared end.
- **44**. The method of claim **39**, wherein the random or partially-random identifier sequence is double-stranded.
- **45**. The method of claim **39**, wherein the identifier sequence is at an end of the double-stranded cypher.

- **46**. The method of claim **39**, wherein the target tag sequence is 5 nucleotides to 20 nucleotides in length.
- 47. The method of claim 39, wherein each of the cyphers are unique.
- **48**. The method of claim **39**, wherein the erroneous nucleotides comprise a polymerase error that arose during amplification or sequencing.
- **49**. The method of claim **39**, wherein the plurality of target nucleic acid molecules comprise a mutation present at a frequency of 2.1×10^{-6} or lower.
- **50**. The method of claim **39**, further comprising detecting a cancer biomarker in one of the error-corrected sequences, wherein the cancer biomarker comprises a nucleotide mutation.
- **51**. The method of claim **39**, further comprising using the error-corrected sequences to assess cancer response to therapy.
- **52**. The method of claim **39**, wherein the sample is derived from a human subject having cancer, and wherein the method further comprises detecting in one of the error-corrected sequences a mutation that confers to the cancer resistance to cancer therapy.

* * * * *